Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. He...

متن کامل

Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia.

Nickel ferrite nanoparticles were synthesized via a facile solvothermal approach. Oleylamine (OAm) was used in all synthetic procedures as a stabilizing agent and solvent. By varying the polarity of the solvents, hydrophobic NiFe2O4 nanoparticles coated with OAm of relatively similar sizes (9-11.7 nm) and in a range of magnetization values (32.0-53.5 emu g(-1)) were obtained. The as-prepared hy...

متن کامل

Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications.

Nickel ferrite nanoparticles with superparamagnetic behavior at room temperature were synthesized using a coprecipitation method. These magnetic nanoparticles were either covered with a lipid bilayer, forming dry magnetic liposomes (DMLs), or entrapped in liposomes, originating aqueous magnetoliposomes (AMLs). A new and promising method for the synthesis of DMLs is described. The presence of th...

متن کامل

An Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications

Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Colloid and Interface Science

سال: 2019

ISSN: 0021-9797

DOI: 10.1016/j.jcis.2019.04.092